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Abstract. A method utilising the coherent state variables for the electromagnetic field and 
appropriate spin variables for two-level atoms is developed for obtaining the dynamical 
evolution of the field and the atoms separately. The case of a single radiation mode 
interacting with two two-level atoms is studied. The time evolution of the photon number, 
starting from n photons and both atoms at their higher levels, is given. Furthermore, when 
the initial state consists of n photons and one of the atoms in its excited state with the other 
in its ground state, the temporal development of the photon number, as well as the motion of 
each atom, are obtained. In the latter case it becomes apparent that energy exchange takes 
place among the atomic systems, while the field acts as a transfer agent. 

1. Introduction 

This paper is concerned with a method for handling problems of quantised radiation in a 
cavity interacting with matter in the case of two-level atoms, represented by spins t .  The 
case of a single classical radiation mode interacting with a spin 4 was originally treated 
by Rabi (1937) exactly within the rotating-wave approximation. Within the same 
approximation the fully quantum-mechanical treatment was given by Jaynes and 
Cummings (1963), Cummings (1965) and Scully and Lamb (1967) by use of photon 
number representation. Further, Pike and Swain (1970, 1971) dealt with a single- and 
multi-mode radiation in connection with non-equilibrium quantum statistics. 

The multi-atom case interacting with a single radiation mode was treated by Tavis 
and Cummings (1968). These authors obtained the eigenvalues and expressions for the 
eigenvectors of the irreducible form of the problem. Their expressions required 
numerical treatment. To the extent of finding the eigenvalues and eigenvectors in the 
irreducible representation, in a completely analytic fashion involving a few two-level 
atoms interacting with a single mode of radiation at resonance with the atoms, these 
were given by Mallory (1969). Mallory used the coherent state representation for the 
electromagnetic field and the various spin values for the atomic states. 

However, if one wishes to obtain the temporal development of the photon number 
in a cavity, containing the atomic system, the information supplied by the eigenvalues 
and the eigenvectors of the irreducible representation needs to be processed further. In 
fact, the full field atomic system propagator is necessary to answer the question of how 
the photon number evolves in time, starting from a given photon number and a given 
atomic system state at an initial time. 

Walls (1971a, b) dealt with the initial-value problem, obtaining probabilities of 
interest. The method employed, under certain circumstances, possesses a good deal of 
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simplifying features, and Walls applied it to a variety of special cases. The method 
presented in this paper, although conveyed through a particular case, is general and can 
supply the mean values of quantities of interest as well as the associated probabilities. It 
is of particular interest when one is asking questions requiring use of a great deal of the 
propagator. 

In this work we develop a method leading to the complete propagator of the 
problem, aimed for use with the initial-value problem. We work out the case of a single 
radiation mode interacting with two two-level atoms in a way prescribed by the 
well-known model Hamiltonian: 

H =  A{waCa+o(S~S~+S2+S2)+ga+(S l+S2)+ga(S t  +si)} (1.1) 

where a+, a represent the usual photon creation and annihilation operators and S’, S 
are related to the Pauli spin matrices via a, = S + S’, a y  = i(S - S+). 

We employ an appropriate system of spin-photon states forming the basis of the 
method which is naturally extended to include the multi-mode case as well as the 
situation where many atoms are involved. Furthermore the various elements of the 
propagator are easily accessible to interpretation. 

It would seem appropriate at this stage to review the spin states we use in this work. 
Essentially they form a modification (to account for the spin statistics) of the Fermi 
states employed earlier by Papadopoulos (1976) in connection with functional integrals 
for fermions. 

For a system of N 3 spins we associate a state labelled by N complex numbers ai, as 

where 10) is the spin vacuum state (all spins down). The bra form of (1.2a) is 

N 
ial,a2,...,aN1=7i-”’exp( -i / = 1  9 iajl2)(0l j = 1  ( l + g j s )  ( 1 . 2 ~ )  

where 6 denotes the complex conjugate of a. 
The operators St, Si, as is well known, obey fermion properties for the same spin: 

while for different spins ( j  # I )  they obey boson properties 

[Sj, S:] = [S; ,  s:] = [Sj, S , ]  = 0. 

It is on account of the boson-like portion of the spin operator properties that we are able 
to use the product n(l + a,$) irrespective of the order of the various factors involved, a 
facility lacking in the fermion case. 

It should be noted here that the spin states (1.2a, b )  are in no way coherent states for 
clearly they are not eigenstates of the lowering operators S,. Nevertheless they form a 
complete set: 
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in the sense that the operator 1 on the RHS of (1.3) stands for the sum of all combinations 
of discrete terms of the form lO)(Ol, I s N .  . . ./2?1)(?1./2 . . . . /NI and all possibilities with one 
spin up, two spins up, . . . , ITN.. . ? 2 T d ( ? 1 ? 2 . .  . ?NI. 

One can say that the continuous nature of the labels a in the states (1.2) makes their 
totality overcomplete in that they represent states over and above the discrete ones. 
However, what is important is that they obey the correct completeness relation (1.3), 
and this is achieved through the exponential factors exp(-$Z lai12), which enable 
exploitation of the integrals: 

(1.4) 

which is all one needs to get rid of the non-discrete quantities. The same phenomenon 
appears in the coherent states, and the main advantage deriving from the use of 
continuously labelled states is the ability to cast the Schrodinger equation in an integral 
form. By the way, the use of complex variables supplies the highest degree of symmetry 
in our expressions. 

It should be noted here that, as with the coherent states, the above spin states are not 
orthogonal. Furthermore, they are normalised by the integral 

which gives the total number of states of N spins. For more details concerning the 
above spin states see Papadopoulos (1978). 

We turn now to the question of spin photon states appropriate for problems 
involving Hamiltonians composed of spin operators, and photon creation and anni- 
hilation operators. We take for the system of these states all possible products of the 
coherent states of the problem with the corresponding spin states. In particular, the 
states associated with our Hamiltonian (1.1) will be of the form 1a2, al)la), denoted by 
/a2, al; a ) ,  and where / a )  stands for a single-species photon coherent state. 

Now, the propagator associated with our Hamiltonian is obtained as a matrix 
element of the corresponding evolution operator as 

( U ;  al, a21~( t ) /a; ,  a;  ; a’) = ( a ;  al, ( ~ 2 1  exp(-iHt/h)lab, a;  ; a’). (1.6) 

Schrodinger’s equation for the propagator takes the form: 

(1.7) 
2 9 2 I /  = J ( a ;  a1, a;?/Hla;’, a:; a”)(af’; a[ ,  a;’lU(t)lu;, a; ; a’) d a1 d a 2  d2af’. 

In order to avoid interrupting the text later we quote here the following identities 
concerning the coherent state variables: 
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These relations can be viewed from the representation point of the operators a’., a as 
follows: a+ replaced by 5 and a by a/&. Clearly, these expressions satisfy the correct 
commutation relations for Bose operators, i.e. [a/&?, 61 = 1. This representation was 
also derived by Mallory (1969) starting from an alternative realisation of the field 
operators. 

In Q 2 we apply our method for obtaining the propagator for a single mode of 
radiation interacting with two two-level atoms. The result is used for solving the 
initial-value problem for finding the photon number evolution in a cavity in which we 
start with iz photons while the two atoms are excited to their upper levels. Furthermore, 
the dynamical evolution of the radiation, and each of the atoms separately, is obtained 
when we start with n photons and one of the atoms is in its upper level, while the other is 
in its ground state. In all cases the radiation is in tune with the atoms. 

2. One mode of radiation interacting with two atoms 

Having laid down preliminary work in the previous section we now proceed to obtain 
the propagator associated with the Hamiltonian (1. l), thus acquiring what one needs to 
solve the initial-value problem for both the radiation and the atomic dynamics 
separately. 

Let us now write down the matrix element of the Hamiltonian (1.1) in the ul, az; a 
representation. We have: 

( a ;  Ul>  anjri/a;, U ;  ; C Y ’ )  

= tt[oCua’ + (w  + w&a’)(alu; +&U; )  + (20  + w&a’)alaza;a; 

+gG(ui +a; +a1a;u; +a2u:0.;)+gCY’(al+az+a1a2u; +alaza;)] 

The propagator in this representation will be 

where in (2.2) = U,j(&, C Y ’ ,  t )  and have to be suitably evaluated. 
Inserting (2.2) for the propagator and (2.1) for the Hamiltonian into the Schrodinger 

integral equation (1.7) and after making use of the identity (1.4) and equating the 
coefficients of the same products of and a‘ we convert our integral equation into a set 
of simultaneous partial differential equations which, in matrix notation, take the form: 

a 
at 

i h - - ” l r=W (2.3) 
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a 
wI5--+0 0 

a gz as 
a 

WE-+w aa? 0 
a 

, gz 

where X and Zr are given by matrices: 

/.a?$ ga? 

aa? 

This is a (4  x 4 )  matrix, and so will be the propagator put in matrix formation: 

(2.3a) 

(2.3b) 

The simultaneous equations derived from (2.3) are the equations of motion for the 
various propagator components, entirely dependent on the coherent variables and the 
time. They must be solved under the initial conditions: 

00 

uij(ii, a!’, 0) = tiij exp(6a’) = tiii -. 
“ = o  n !  

( 2 . 3 ~ )  

These conditions derive immediately from the fact that the evolution operator at t = 0 is 
U(0)  = 1, and therefore the propagator equals the product: 

We now write down the simultaneous equations for the first column: 

a a 

a 

i- U00 = WE- Uoo+ ga? (Ulo+ U d  
at aa? 

a 
( a :  ) i- Ulo = g: U00 + w E: + 1 U10 + ga? U30 at aa! 
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Having in mind the initial conditions ( 2 . 3 ~ )  and taking account of (2.5) we look for 
solutions in the form: 

Inserting the forms ( 2 . 5 ~ )  in (2.5) we obtain from the resulting equations (in the 
form of power series in ti and a ' )  the equations governing the motion of the various 
coefficients u ( ~ ) .  If, in the process of the above derivation, we add and subtract the 
second and third equations in (2.5) we have: 

(2.56) 

i(a&) - lik') = w n ( u 0  - U&)). ( 2 . 5 ~ )  

In order to obtain the required solution for the first column we apply routine 
normal-mode analysis to ( 2 . 5 ~ )  and make use of (2.5c), under the initial conditions 

(2.5d) u&'(O) = 1 u:"d(O) = u:"O'(O) = u&)(O) = 0 

derived from ( 2 . 3 ~ ) .  
The eigenvalues associated with the system (2.56) are: 

1 w n + a n  A:"' = w n  -an (2.6) = A b " )  - - wn 

where an = g[2(2n - l)]"*. 
The eigenvalues associated with the other columns are A t+l) ( k  = 0 , 1 , 2 )  for the 

second and third columns, and A t+2) ( k  = 0, 1 ,2)  for the fourth column. In addition the 
corresponding equations of motion for their various components are those for the 
first column (2.56, c),  but with the n in the coefficients of the unknowns replaced by 
(n + 1) for the second and third column equations, and by (n + 2) for the fourth column 
equations. However, because of the differing initial conditions for each column, the 
solution cannot be obtained in a fully recursive fashion. Nevertheless, there is a facility 
in the case of the second and third columns, corresponding to the same physical 
situation. This is the instance of one spin up and it does not matter, of course, which of 
the two is up. 

The required u c n ) ( t )  for the first column are: 

1 
2 n - 1  

u&) ( t )  = - exp(-iwnt)[n cos(a,t) + ( n  - l)] 

- inn,  
2g(2n - 1) 

u:"d(t) = u:"d(t) = exp(-iwnt) sin(ant)  

n(n - 1) 
2 n - 1  

u&(t)=- exp(-iwnt)[cos(O,t) - 11. (2.6a) 
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Working in a similar fashion we find the expressions for the rest of the propagator 
elements. The components of the second and third columns can be obtained from 
knowledge of one of them, by interchanging the two middle ones. To avoid duplication 
we write the expressions for the second and third columns together. We have: 

- n + l a i n  
CY - n + l  In 

U02 = U$)----- ( n ) a  a - 
n!  u"l=c U01 n !  

where 

( n )  Cynarn 
n!  U33 = c U 3 3  

( 2 . 7 ~ )  

where 

exp[-iw (n  + 2) t l [~os(R,+~t )  - 11 
1 

U&' ( t )  = - 
2n + 3  

u(; ) ( t )  = u&'(t)  = 
-iOn+2 

2g(2n + 3) exp[-io(n + 2)t] sin(fln+zt) 

1 
U & ) ( t )  = - exp[-iw(n + 2)t][(n + 1) cos(fln+2t) + (n + 2)]. ( 2 . 8 ~ )  

Expressions (2.5a), (2.6a), (2.7), (2.7a), (2.8) and ( 2 . 8 ~ )  complete the evaluation of 
the propagator. 

We now have at our disposal all of what we need to answer questions such as, what is 
the development in time of the photon number or the state of each atom separately, 
given the photon number and the state of each atom at an initial time. 

2n + 3  
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As a first application let us make use of our propagator for obtaining the evolution in 
time of the photon number of a single mode of radiation interacting with two spins, each 
flipping at an energy equal to that of the photon species involved. We begin with an 
initial state of n photons present in the cavity and with both spins in their higher levels. 
In terms of the radiation and spin flipping operators the initial state is 
(n  !)-1/2u'"S:S: IO). The temporal development of the photon number is then given 
by: 

U "  
(u'a), = (OIS2S1 = exp 

J n !  

Using the representation al, a2; a in which our propagator has been expressed we 
find, after performing the various a and (T integrations involved, the result: 

(u 'u) ,  = ( n  +2)u:"oi"(-t)~:n3'(t)+2(n + 1 ) U ~ f 1 ) ( - t ) ~ j l ) ( t ) + n u ~ ' ( - t ) ~ : n 3 ) ( t ) .  ( 2 . 9 ~ )  

In deriving ( 2 . 9 ~ )  we have taken account of the equalities u g )  = u&' and U!:) = U&) .  

Further utilising the expressions for the various coefficients U'') from (2.6u), (2.7) and 
( 2 . 7 ~ )  we find: 

[(2n + 3)(2n2 + Sn + 3) - 1 - ( n  + 1) sin2(Clfl+2t) 
1 

(a+a)r = (2n + 3)2 

-4(n + l)(n +2)  c0s(SZfl+2t)]. (2.9b) 

We believe (2.9b) to be a new analytic result concerning the initial-value problem in 
the case of two atoms. The result involving a single atom can be found, for example, in 
Cummings (1965). 

= g[2(2n + 3)]"2 is approximately twice the 
flipping frequency, g(n + 1)'12 for the case when one spin is involved. In the case of one 
atom the photon number rises from n to n + 1 and falls back to n periodically with a 
period ?s/g(n + 1)'12. 

We would like to look into the analogous situation when two atoms are involved. 
From (2.9b) it follows that the photon number is an oscillatory function of time (see 
figure 1) with its maxima and minima (obtained by differentiation with respect to t )  
occurring at the moments tk  = k?s/2g(n +3/2)"2 (k = 0, 1 ,2 ,  . . .). Each minimum 
equals n, when k is even, while each maximum equals [n  + 2 - 2/(2n + 3)'], which is not 
quite n + 2, when k is odd. This analysis shows that the photon number oscillates, now, 
with a period r / g ( n  + 3/2)'", which is approximately the same as for the single-atom 
case, the difference being in the light intensity. Owing to the fact that the maximum of 
the photon number cannot become exactly n +2,  although initially the two atoms were 
charged exactly with two photons, it would appear that as long as the photon numbers 
involved are small it is not easy to have them both simultaneously released. This is in 
contrast with the situation involving one atom. 

The spontaneous emission is obtained from ( 2 . 9 ~ )  by taking n = 0. We have: 

We recall that the quantity 

(a+u),,,,,. =$[I -cos(g&t) -4 sin2(g&t)l. ( 2 . 9 ~ )  

As a further application let us start with n photons and one of the atoms in its upper 
level (say atom 1) while the other is in its ground state. In symbols our initial state is 
( n  !)-1/2u+'S: IO). To obtain the time development of the photon number under the 
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t h / 2 g  I 2 1  511’21 

Figure 1. The time evolution of the photon number, when at t = 0 there were 20 photons 
and both atoms are in their excited states. Both atoms expel their energy simultaneously 
and re-absorb it periodically in a time equal to ~ /2g(21 .5)”’ ,  half the oscillation period of 
the photon number. 

above initial conditions, we employ (2.9), but now using the new initial state, and we 
have: 

(a+a) ,  = ( f i  + l)uj“o“’(-t)uj; ;’(t)+n(uj;’(-t)u~~’(t)+ ujn2)(-t)Ug)(t)) 

+(n - l)ujn3-’)(-t)u:nl’(t). (2.10) 

Again, using in (2.10) expressions from (2.6a),  ( 2 . 7 ~ )  and ( 2 . 8 ~ )  for the propagator, we 
find that the photon number in this case will be: 

sin’ (0, t ) .  
1 

2(2n + 1) 
(a‘a), = n + (2.10a) 

Evidently there is almost no change in the photon number, which at first sight looks 
somewhat strange, since atom 1 is bound to release a photon at a later moment. The 
other alternative is that the photon leaving atom 1,  instead of entering the radiation 
pool, will be transferred by the field to atom 2. Then, atom 2 will be in the initial state of 
atom 1 and the radiation will again act as a transfer agent of energy from atom 2 to 1, 
and this process of energy exchange between the atoms will continue periodically. We 
quantify the above picture by evaluating the mean values (S:S1), and (SfS,),, describ- 
ing the state of occupation of the upper level of the atoms 1 and 2,  respectively. To do 
this we replace successively the operator u+a in (2.9) by the operators S:Sl and SiSz 
and at the same time replace the bra and ket form of the initial state by the 
corresponding forms of the state ( n  !)-l”a+nS: (0). We have: 

(2.10b) 

(2.10c) 
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The plots of (2.10b, c)  (see figure 2) show clearly the transfer of energy from atom 1 
to atom 2. The bottom portions of the curves are flatter than the top ones, showing that 
the atoms prefer their ground levels. The period of spin flipping is .rr/g(n+$)"2, 
approximately the same as with a single spin interacting with the radiation field. 

The picture drawn from the above analysis is that when atoms are near each other 
(their coupling with the radiation is about the same) they exchange energy between 
themselves, rather than the radiation field, unless the majority are in their excited 
states. 

The present method supplies the field matter propagator in the case of two two-level 
atoms and a single radiation mode. The extension to a higher number of atoms 
interacting with multi-mode radiation can be attained in a natural fashion, however, not 
without an increase in the complexity of the evaluations. The main advantage of the 
approach is that it provides a systematic way for handling the dynamical evolutions of 
the radiation and the matter separately. 

1 

t ilr/2g ( n  + 4 ~ ' ' ~ 1  

Figure 2. The time development of the state of upper-level occupation for atoms 1 and 2, 
when at time t = 0 there were n photons and atom 1 was in its upper level while atom 2 was in 
its lower level. As time proceeds the two atoms exchange energy periodically in a time equal 
to ?r/2g(n +$)I/', which is half the period of atomic oscillation. 
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